AN ECONOMIC MODEL OF COMMERCIAL OFFSHORE AQUACULTURE PRODUCTION SYSTEM IN THE GULF OF MEXICO

Dr. Benedict C. Posadas

Assistant Research and Extension Professor of Economics Mississippi State University Coastal Research and Extension Center Mississippi Sea Grant Advisory Service

September 10-12, 2002

Offshore Aquaculture Consortium Workshop 2002

Objectives

- Develop a hypothetical commercial offshore aquaculture production system (COAPS) in the Gulf of Mexico
- Estimate annual costs and returns of COAPS.
- Develop annual cash flows for COAPS.
- Evaluate the economic and financial feasibility of COAPS under different economic and biological scenarios.

September 10-12, 2002

Offshore Aquaculture Consortium Workshop 2002

Data Sources

- Offshore aquaculture production system
 - Offshore Aquaculture Consortium (OAC)
- Offshore cage design & operation
 - Ocean Spar and OAC
- Gulf of Mexico ex-vessel prices
 - National Marine Fisheries Service (NMFS)

Offshore Aquaculture Production System

- Aquaculture Service Vehicle (ASV)
- 3,000-m3 Ocean Spar Sea Station (OSSS) cages
- Moorings, feed distribution system and net cleaners
- Service boats

September 10-12, 2002

Offshore Aquaculture Consortium Workshop 2002

Land-based Support Facilities

• 2-ha base camp

September 10-12, 2002

- Office building and trailers
- Trucks and service vehicles
- Fish transport vehicle

Initial Fixed Investment

(12-cages or 36,000 m3)

Item	Total Cost (US\$)	US\$/m3
Onshore support facilities	0.33	9
Offshore facilities	3.52	98
Total investment	3.85	107

Offshore Aquaculture Consortium Workshop 2002 September 10-12, 2002

Offshore Aquaculture Consortium Workshop 2002

Costs and Returns Estimation

- Recommended management practices
- Biological knowledge of candidate fish species
- Estimated input usage and prices
- Established ex-vessel fish prices

Investment Analysis

- Payback period (yr)
- Net present value (US\$M)
- Internal rate of return (%)
- Base model assumptions
- Improved growth (+25%)
- Enhanced market (+US\$1/kg)
- Enhanced market + improved growth

September 10-12, 2002 Offshore Aquacultu

Offshore Aquaculture Consortium Workshop 2002 September 10-12, 2002

Offshore Aquaculture Consortium Workshop 2002

12- Cage COAPS Base Model

Item	Unit	COBIA12	SNAP12	DRUM12
Stocking density	Fish/m3	7	83	41
Growth rate	G/month	583	37	80
Ex-vessel price	\$/kg	4.25	4.50	3.75
Harvest size	Kg/fish	5.25	0.45	0.97
Fish production	1000 m t/yr	1.08	1.08	1.08
Net returns	\$M/yr	0.83	-0.64	-0.19
NPV	\$ M	3.17	<0	<0
IRR	%	29	<0	<0
Investment decision		Feasible	Infeasible	Infeasible

12- Cage COAPS Enhanced Market Model

Item	Unit	COBIA12	SNAP12	DRUM12
Stocking density	Fish/m3	7	83	41
Growth rate	G/month	583	37	80
Ex-vessel price	\$/kg	5.25	5.50	4.75
Harvest size	Kg/fish	5.25	0.45	0.97
Fish production	1000 mt/yr	1.08	1.08	1.08
Net returns	\$M/yr	1.87	0.39	0.84
NPV	\$M	8.87	0.76	3.24
IRR	%	59	15	30
Investment decision		Feasible	Feasible	Feasible

Offshore Aquaculture Consortium Workshop 2002

September 10-12, 2002

September 10-12, 2002

Offshore Aquaculture Consortium Workshop 2002 n

12- Cage COAPS Improved Growth Model

0				
Item	Unit	COBIA12	SNAP12	DRUM12
Stocking density	Fish/m3	6	67	33
Growth rate	G/month	729	46	100
Ex-vessel price	\$/kg	4.25	4.50	3.75
Harvest size	Kg/fish	6.57	0.56	1.21
Fish production	1000 mt/yr	1.08	1.08	1.08
Net returns	\$M/yr	0.87	-0.17	0.05
NPV	\$M	3.39	<0	<0
IRR	%	30	<0	2
Investment decision		Feasible	Infeasible	Infeasible

Offshore Aquaculture Consortium Workshop 2002

September 10-12, 2002

September 10-12, 2002

Offshore Aquaculture Consortium Workshop 2002

...

Summary

- These simulation results are based on experimental or "best guess" scenario.
- Simulation results indicate that the economic viability of COAPS depends on the following:
 - better fish
 - faster growing fish
 - cheaper costs of production

Limitations

- ASV is still under development
 - capacity (?)
 - costs (?)
- Environmental monitoring
 - equipment, supplies and manpower
 - costs (?)
- Permitting process
 - length of time (?)
 - costs (?)

Further Economic Research

- Verify simulation model assumptions
 - logistical problems: fingerling, feed, fish, manpower, supplies
 - pilot scale experiments: fish growth, feed type, feeding, FCR, treatment, stocking, harvest, transport
- Integrate the element of RISK in the model
- Conduct sensitivity analysis
- Conduct economic impact analysis
- Develop economic-environmental trade-off model